Three-day Education Journalism Think Tank addresses South African education coverage

  Education journalists, educators, and policymakers gathered in Makhanda today for the start of a pioneering three-day Education Journalism Think Tank, running until 7 December. Organised by Rhodes University’s School of Journalism and Media Studies (SJMS) and the Binding Constraints Lab (BCL), the event aims to address critical gaps in South Africa’s education news coverage […]

About

Tebello Nyokong Institute for Nanotechnology Innovation

Background

The Tebello Nyokong Institute for Nanotechnology Innovation (TNINI) was established in 2007 by the Department of Science and Technology with Mintek. TNINI is an international leader in knowledge creating and human capital development in the field of medicinal chemistry and nanotechnology. It is a well facilitated with research instruments and specialized laboratories not found elsewhere under one roof, making it a one-stop-shop for medicinal chemistry and nanotechnology research. Its namesake the world-renowned scientist, Distinguished Professor Tebello Nyokong and DST/NRF SARCHI of Medicinal Chemistry and Nanotechnology, leads the Tebello Nyokong Institute for Nanotechnology Innovation.

The Tebello Nyokong Institute for Nanotechnology Innovation has seen an immense growth in multidisciplinary research projects. The research projects under investigation seek to address nowadays challenges, such as climate effect on human health, materials for green energy generation or harvesting, sensors for disease diagnosis, and photodynamic therapy treatment of cancer. The advent of nanotechnology saw further growth to the Institute’s research endeavors and the following research projects are investigated:

  • Nanomaterial conjugates with photochemical and photophysical properties,
  • Non-linear optical properties of materials and nanomaterials,
  • Nanomaterials for drug delivery studies,
  • Nanomaterials for anticancer and antimicrobial photodynamic therapy,
  • Nanomaterial composites for water treatment and purification,
  • Nanomaterial composites and conjugates for sensing applications
    • monitoring of diseases and virus outbreaks,
    • detection of diseases and virus surveillance, and
    • monitoring environmental and water pollution,
  • Nanomaterials and their composites for energy generation